Section I 10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

1. Which of the following is the angle between the vectors $\vec{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

- A. 10°
- B. 63°
- C. 140°
- D. 117°
- **2.** Which of the following equal to $\cos \theta$

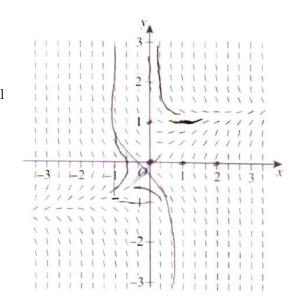
A.
$$\sin^2 \frac{\theta}{2} - \cos^2 \frac{\theta}{2}$$

B. $2\cos^2 \frac{\theta}{2} + 1$
C. $1 - 2\cos^2 \theta$
D. $\frac{\sin \theta}{\tan \theta}$

- **3.** The polynomial $P(x) = x^3 x^2 5x 3$ has a double root at $x = \alpha$. What is the value of α ?
 - A. $\frac{-5}{3}$ B. -1 C. 1 D. $\frac{5}{3}$

4. Which of the following is equivalent to $\int \sin x \cos x \, dx$?

- A. $-\cos 2x + c$ B. $-\frac{1}{2}\cos 2x + c$ C. $-\frac{1}{4}\cos 2x + c$ D. $\frac{1}{4}\cos 2x + c$
- 5. What is the domain of $y = 3\cos^{-1}(2x+1)$?
 - A. Domain [-1, 0]
 - B. Domain (1,0)
 - C. Domain $[-\frac{1}{2}, 0]$
 - D. Domain $[\frac{1}{2}, 0]$


- 6. In a Mathematics class a teacher can award one of 4 grades, A, B, C or D to each student. What is the minimum number of students required so that at least 8 students are guaranteed to receive the same grade?
 - A. 28
 - B. 29
 - C. 32
 - D. 33
- 7. Which of the following is the range of the function $\frac{1}{x^2+1}$
 - A. $(-\infty,\infty)$
 - B. $(-\infty, 1]$
 - C. (0, 1]
 - D. [0,1]

8. A curve has an asymptote at $x = \frac{\pi}{3}$. Which of the following could be the equation of the curve?

- A. $y = \sec\left(x \frac{\pi}{3}\right)$ B. $y = \sec\left(x + \frac{\pi}{3}\right)$ C. $y = \cot\left(x - \frac{\pi}{3}\right)$ D. $y = \csc\left(x + \frac{\pi}{3}\right)$
- **9.** Which of the following is the primitive of $\frac{4}{\sqrt{9-x^2}}$?
 - A. $\frac{4}{3}\sin^{-1}\frac{x}{3} + c$ B. $\frac{4}{3}\sin^{-1}3x + c$ C. $4\sin^{-1}3x + c$ D. $4\sin^{-1}\frac{x}{3} + c$
- **10.** Which of the following best represents the differential equation shown in the slope field?
 - A. $\frac{dy}{dx} = \frac{x}{y} y^2$
 - B. $\frac{dy}{dx} = \frac{x}{y} + y^2$

C.
$$\frac{dy}{dx} = -\frac{x}{y} - y^2$$

D. $\frac{dy}{dx} = -\frac{x}{y} + y^2$

Section II 60 marks Attempt Questions 11-14 Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available For questions in Section II, your response should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Solve
$$\frac{3}{2x-5} \le -1$$
 3

(b) Find the derivative of $\cos^{-1}\left(\frac{3x}{2}\right)$ 1

(c) For what values of m are the distinct vectors $\begin{pmatrix} m \\ 2m+6 \end{pmatrix}$ and $\begin{pmatrix} m+1 \\ -1 \end{pmatrix}$ perpendicular? 2

(d) Find
$$\int \cos^2 4x \, dx$$
 2

(e) Evaluate
$$\int_0^{\overline{6}} \cos x \sin^3 x \, dx$$
 3

(f) For what values of m is the polynomial
$$x^2 - (m+2)x + 2(m+2)$$
 positive for all x 2

(g) Consider the expansion $(2x - p)^9$. The coefficient of x^6 is -344064. **2** Find the value of p

Question 12 (15 marks) Use a SEPARATE writing booklet

(a) Find
$$\int \frac{dx}{25+4x^2}$$
 2

(b) Given that
$$\sin \theta = \frac{3}{4}$$
 and $\frac{\pi}{2} \le \theta \le \pi$ determine the exact value of $\tan 2\theta$ **3**

(c) (i) Find the derivative of
$$x \log_e x - x$$
 1

(ii) Hence evaluate
$$\int_{\sqrt{e}} \log_e x \, dx$$
 2

 $\mathbf{2}$

(d) A mixed volleyball team of eight players is selected from ten males and nine femalesIn how many ways can this be done if the team must have at least 2 female players

(e) The vectors
$$\vec{u} = \begin{pmatrix} a \\ 3 \end{pmatrix}$$
 and $\vec{v} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$ are parallel. Find the value of a 2

(f) The polynomial
$$P(x) = (x - p)^3 + q$$
 is zero at $x = 1$ and when divided by x
the remainder is -7 . Find the possible values of p

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) Evaluate
$$\int_{-1}^{3} x\sqrt{3-x} \, dx$$
 using the substitution $u = 3-x$. 4

(b) (i) Express $\sqrt{3}\cos x + \sin x$ in the form $R\cos(x-\alpha)$ where R > 0 and α is acute. 2 (ii) Hence solve $\sqrt{3}\cos x + \sin x = 1$ for $0 \le x \le 2\pi$. 2

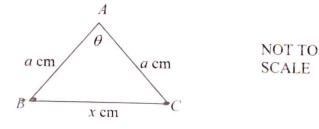
3

- (c) Use the process of Mathematical induction to prove $2 \times 1! + 5 \times 2! + 10 \times 3! + ... + (n^2 + 1)n! = n(n+1)!$ for all positive integers *n*.
- (d) A population of mice in a meadow after *t* years satisfies the logistic **4**

differential equation
$$\frac{dP}{dt} = \frac{3P}{2500} (2500 - P)$$
, where the initial population of

mice is 500.

Given
$$\frac{1}{P} + \frac{1}{2500 - P} = \frac{2500}{P(2500 - P)}$$
, solve the differential equation to find the

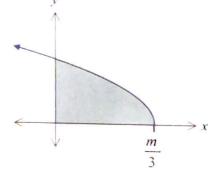

population P of the mice at time t. Express your answer in the form

$$P = \frac{A}{1 - Be^{-kt}}$$
 where A, B and k are integers.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

- (a) Solve the differential equation $(x^2 + 1)\frac{dy}{dx} = 6xy$ where x = 1 and y = 2 giving 3 your answer as y in terms of x.
- (b) Given that $y = e^{2x} + e^{-2x}$, determine the values of constants *a* and *b* that satisfy the following differential equation $\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 5e^{2x} + e^{-2x}$.
- (c) In the triangle ABC, AB = AC = a cm. The angle BAC is increasing at the rate of 2 radians/min. Let $\angle BAC = \theta$ radians and BC = x cm.



(i) Show that
$$x = \sqrt{2 - 2\cos\theta}$$
. $\chi = \alpha \sqrt{2 - 2\cos\theta}$ 1

(ii) Show that
$$\frac{dx}{d\theta} = \frac{a\sin\theta}{\sqrt{2-2\cos\theta}}$$
.

(iii) Determine, in terms of *a*, the rate with respect to time at which *BC* is increasing when $\theta = \frac{\pi}{3}$ radians.

(d) Let
$$f(x) = \sqrt{m-3x}$$
 for $x < \frac{m}{3}$. The graph of $y = f(x)$ is shown. 4

The area enclosed by the graph y = f(x), the x-axis and the y-axis is rotated about the y axis. Find the value of m such that the volume of the solid formed is $\frac{5000\pi}{27}$ cubic units.

End of Paper

- 8 -

MATHEMA	TICS EXTENSION 1 TRIAL 2022		
1. $a_{1} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$	4. $\int \sin i c \cos x dx = \frac{1}{2} \int \sin 2x dx$		
a.b= a [161 cos 0	$= \frac{1}{2} \left(-\cos 2x \right) + c$		
Coso= a-b [a]A]	$= -\cos 2\pi + c$ 4 (c)		
= (3x - 1 + 4x - 2)			
V9+16 J1+4	515206-+151		
= <u>s'</u> = <u>1</u> svs vs	-252250		
	-15250 [-40] (3)		
$\Theta = c_{0} + L$ = 63° (3)	6. 4×7+1=29 (B)		
2. (b) $\frac{5in\theta}{2} = \frac{5in\theta}{5in\theta}$	7. 1. O(y{1		
2. (b) $\frac{5100}{400} = \frac{5100}{5100}$	(0, 1] (O		
= SINB × 650 SNB			
= τοςθ	8. A. y=sec0=1=1		
3. $P(x) = x^3 - x^2 - 5x - 3$	B. y = sec (2 =)		
$P'(x) = 3x^2 - 2x - 5$	C y= Cot (0) Eos 0 Sino =0 (C) Sino undefined		
Double root : Pia)=0	at x=0		
$0 = 3a^2 - 2a - 5$ (P - 15 5 - 2	$9. \int \frac{4}{\sqrt{3^2 - x^2}} dx = 4 \sin^{-1} \frac{x}{3} + c (0)$		
$0 = 3a^{2} + 3a - 5a - 5 \qquad [F - 5, s]$ $0 = 3a(a + 1) - 5(a + 1)$			
0 = (a+i)(3a-5)	10. (A) k=1 y=1 dy: 1-1=0 /		
:. a = -1 or \$	x = -2 y = -1 aly = 1		
	2 P		
$P(-\frac{1}{2}) = (-1)^{3} - (-1)^{2} - 5(-1) - 3$ $= -1 - 1 + 5 - 3$	4 C CA = -1		
= 0			
	9 D 10 A.		
· P(-1) = 0 P'(-1) = 0			

(15 Marks)

	(15 Marks)		
11	a) <u>3 <-1</u>		d) $(\cos^2 4\pi d\pi = (\frac{1}{2} + 1 \cos 8\pi) d\pi$
	2x-5 critics	el values	1
	x = 5		$=\frac{1}{2}x + \frac{1}{2}\frac{5138x}{8} + c$
	2		=1x+1 sin 8x+c [2]
3	31		2 16
7	$\frac{3}{2x-5} = -1$		e) Cos x sin x dn
·	3 = -2x +5		0
-			$= \left[\frac{\sin 4x}{4} \right] \frac{\pi}{2}$
	2x = 2		4 10
	x=1		-6: -14
			$= (\sin \pi)^4 - \sin^4 0$
-			4
-	$tent n = 2 \frac{3}{-1} \frac{1}{-1}$		$=\left(\frac{1}{4}\times\frac{1}{2^{4}}\right)-0$
-			
	1 5 x 122	[3]	= [3]
	$b_{1} y = Co_{5}^{-1} \frac{3x}{2}$	[a=2	F) For positive Q <0
		F(x) = 3x	
	$\frac{dy}{\sqrt{4-9x^{2}}}$	f'(x)=3	$\Delta = b^2 - 4ac$
		[1]	$= \left[- (bn+z) \right]^2 - 4 \left(2 (m+z) \right)$
	C) perpendicular when		$= m^2 + 4m + 4 - 8m - 16$
		2	$= m^2 - 4m - 12$
	$\binom{m}{2m+6}$ $\binom{m+1}{-1}$ = $\binom{m+1}{-1}$		= (m-b)(m+2) $m=-2, b$
	m(m+1) + -1(2m+6) = 0		<u>(</u>)
_	$m^2 + m - 2m - 6 = 0$		-2 6
	$m^{2} - m - 6 = 0$		(m-6)(m+2) (0 test m=0
	(m-3)(m+2)=0		-6+240
	1. m = 3 or -1	[2]	-2 < m <6 [2]
		ر* ا	
			5) betticent of 26 = 9 ((22) (-p) 3
			3)
	1		- 344 064 = -5376p3
-			$c_4 = p^3$
			[2]
-			<u>p=4</u> [2]

(15 Marks)

a) $\int \frac{dx}{25 + 4\pi^2} = \frac{1}{2} \left(\frac{2 dx}{5^2 + (2\pi)^2} \right)^2$ 12 C) (i) y= xlog x - x u=x 4=1 $V = \log_2 2$ V' = 1 $= \frac{1}{5} \times \frac{1}{2} + \frac{1}{5} + \frac{$ a=5 F(x)=2x $= 1 \tan^{-1} 2x + c$ [2] F'(z)=2 = 1 + 109 2 - 1 E'J_ = loger 6) sine = 3 (a2) 4 (ii) $\left(\log x \, dx = \left[x \log x - x \right] \right)^{e}$ 3 57 tan 0 == 3 = (eloge - e) - (Je log se - Je) = (e-e) - (Je loge = - Je) $\frac{\tan 2\theta}{1-\tan^2\theta}$ = 0 - (1 Je loge - Je) = 0 - 1 Se + Se = 2 × -3 = 15€ [2] 1- (-2)2 -<u>6</u> V1 1-9 = -63 -7 = 21 + 5 d) 8 players 10 males 9 females = 2157 At least 2 female = Total = (OF + IF) = 357 [3] $= {}^{19}C_g - [{}^{9}C_{\chi} \times {}^{10}C_{g} + {}^{9}C_{\chi} \times {}^{10}C_{\eta}]$ [2] = 74 457

-3-

-4- (15 Marks) (13) 3 × 13 - 2 dr u = 3-20 2) (e) $u = \begin{pmatrix} a \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 7 \end{pmatrix}$ For parallel $\binom{a}{2} = k\binom{1}{2}$ du = -1 du = dr 3 = Kx7 $=-((3-u)u^{\frac{1}{2}}du$ x=3 u=0 $\frac{3}{7} = K$ x = -1 u = 4 $= ((3u^{\frac{1}{2}} - u^{\frac{3}{2}})du$:. $a = \frac{3}{2} \times \frac{2}{2}$ $\chi = 3 - u$ [2] a= <u>6</u> 7 $= \begin{bmatrix} 3u^{3/2} & u^{5/2} \\ \hline 3 & 5 \end{bmatrix}^{\frac{1}{2}}$ $P(x) = (x-p)^3 + q$ (f) P(1)=0 } $= \left[2u^{3/2} - \frac{2}{5}u^{\frac{3}{2}} \right]^{4}$ P(0) = -7 $= \left[2(4)^{3/2} - \frac{2}{5}(4)^{5/2} \right] - \left[0 - 0 \right]$ $P(1) = (1-p)^3 + q$ $0 = (1-p)^3 + q$ (1) = 16-64 $P(o) = (-p)^{3} + q$ = 16 5 [4] $-7 = (-p)^3 + q$ $-7 = -p^3 + q$ b)(1) J3 cos x + Sin x = R cos x cos + R Sin x Sind $-7+p^{3} = q$ (2) $\frac{R}{t} + \frac{R}{s} = \sqrt{3+1}$ RSINA = 1 Sub (2) Into () $R \cos d = 53$ SINA=1 $\cos d = \sqrt{3}$ $0 = (1-p)^3 - 7 + p^3$ ton x = 10=1-3p+3p2-p2-7+p8 [2] : Storn + SIAN = 2601 (x-I) $0 = 3p^2 - 3p - 6$ 0= p2-p-2 v reide = 3 (1) 2005(九-五)=1 0 = (p-2) (p+1) :-p=2 or -1 [3] · 2- === or x-== x= I + I × マ × = 5 I + F $= \prod_{2} or = \lim_{2} [2]$, e 200 B

-5step 1 : Prove true for n=1 (c) LIN = 2×1! $R_{1H} = 1(1+1)!$ = 2! L 145 = R 145 = 2 = 2 True for n=1 step 2: Assume true for n=k $2 \times 1! + 5 \times 2! + 10 \times 3! + \dots + (k^{2} + 1) \times ! = k (k+1)!$ ¥ skp3: Prove true for n=k+1 $RTP: 2 \times (! + 5 \times 2! + 10 \times 3! + ... + (k+1) k! + ((k+1)+1)(k+2)! = (k+1)(k+2)!$ Sk LHS = K (K+1)! + [k²+2k+1+1] (K+1)! (by assumption) = (k+1)! [k+ k2+2k+2] = (K+1)! [K"+ 3K+2] = (K+1)! (K+2)(K+V = (K+2)! (K+1) = Ritt stop 4: Since true for n=1, then true for n=2, n=3 and so on for all position. integer. [3] .

	-6-		
dr = 3P (2	500-8)	Trivial soln	n 1=0
dt 2500			P = 2500
dP	3 dt		
P (2500-P) 2500			
2500 dP (2500 - P)	= 3 db		
/			
(1+ 1	$=$) dP = 3 $\int dt$		
J (P 2500-			
$\ln P - \ln z $	2500 - r = 3t + c		
	= 3t + c		
2500-	pl		
I P	$l = e^{3t+c}$		
2500	$= e^{3t+c}$ $= e^{3t} \times e^{c}$		
	$= A e^{3t}$	where $A = e^{C}$	
ρ	$= Ae^{3t}$	$A = \pm e^{c}$	
2500-8			
when t = 0	500. = Ae°		
f = 500	2000		
	$\frac{1}{4} = A$		
	$\frac{P}{2500-P} = \frac{1}{4}e^{3b}$		
	$4p = e^{3t} (25)$	'00 - P)	
	4P = 2500 e	$3t - Pe^{3t}$	
	4 P+ Pe3t = 2500e	36	
	P(4+e3t) = 2500C	3+	
	P = 2500 e	3t ÷ e st	
	4test		
	= 2500		
	4 + 1		
	= 2500	B =	-4 [4]
	1 - 4	2-36	
	OR P= 2500		
	1-6-	2 M	
		· ·	

(15 Marks) -7- $\frac{14}{dx} = \frac{1}{2} + 1 \frac{1}{dx} = \frac{1}{2} + \frac{1}{2} \frac{1}{dx} = \frac{1}{2} + \frac{1}{2} \frac{1}{dx} = \frac{1}{2} + \frac{1}{2} \frac{1}{dx} + \frac{1}{2} \frac{1}{dx} = \frac{1}{2} \frac{1}{dx} + \frac{1$ $\left(\frac{dy}{y}=\right)\frac{6\pi}{\chi^2+1}\,d\chi$ a1 $\ln |y| = 3 \int \frac{2x}{x^2 + 1} dx$ $\ln |y| = 3 \ln |x^2 + 1| + c$ X=1 y=2 1n2 =31n2 +c -2102 = C : Ing = 31~ (2+1) - 21n2 $\ln y = \ln (x^2 + i)^3 - \ln 2^2$ $\frac{y = (x^2 + y)^3}{4}$ [3] b) $y = e^{2x} + e^{-2\pi}$ $\frac{dy}{dn} = 2e^{2n} - 2e^{-2n}$ $\frac{d^2y}{dn^2} = 4e^{2n} + 4e^{-2n}$ $\frac{d^2y}{dn^2} = 4e^{2n} + 4e^{-2n}$ $\frac{d^{2}y}{dx} + \frac{dy}{dx} + \frac{by}{dx} = 4e^{2x} + 4e^{-2x} + 2ae^{2x} - 2ae^{-2x} + be^{2x} + be^{-2x}$ $= (4+2a+b)e^{2k} + (4-2a+b)e^{-2k}$ Equating coefficients: 4+2a+6=5 4-2a+6=1 -2a+b = -3 3 2a+b=1 1) -2a+b=-3 (2) -2a - 1 = -32b = -2-20 = -2 a = 16=-1 · a=1 b=-1 [4]

-8-6 cosine rule: c2 = a2 + b2 - 2010 cosc $x^2 = a^2 + a^2 - 2a^2 \cos \theta$ Ci = 2a²-2a²coso (factorin a²) $x = \alpha \sqrt{2 - 26050}$ which is required F17 $\frac{dx}{d\theta} = \frac{a \times 1}{2 - 2 \cos \theta} \frac{1}{2} \times \frac{2 \sin \theta}{2 \sin \theta}$ $= \frac{a \sin \theta}{\sqrt{2 - 2 \cos \theta}}$ which is il v [J] which is required $\frac{dx}{dt} = \frac{dx}{d\theta} \times \frac{d\theta}{dt}$ wil $= asin \theta \times 2 when \theta = \Pi$ $\sqrt{2 - 2605 \theta}$ = 20 sin J = 2a J3 = J3a cm/min [2] y= JM-3x x=0 y= Jm V=TT fx2dy d) y= m-3x $\int m = \pi \left[\left(y^{4} - 2my^{2} + m^{2} \right) dy \right]$ 3x=m-y2 $\begin{array}{r} \chi = \underline{m-y^{2}} \\ \chi^{2} = (\underline{m-y^{2}})^{2} \\ = \underline{m^{2} - 2my^{2} + y^{4}} \\ q \end{array}$ $= \underline{\mathrm{II}} \left[\underbrace{\mathrm{Y}}^{5} - 2m \underbrace{\mathrm{Y}}^{3} + m \underbrace{\mathrm{Y}}^{j} \right]^{jm}$ = I [(Jm) 5 - 2m (Jm) 3 + m Jm] 8 m 7/2 = 5000 m 135- 27 = I [m²Jm - 2 m²Jm + m²Jm] = # > W Jm (1-2+1) - m2 Jm # × B - m2 Jm # × B $m^{5/2} = 3125$ m = 25[4] 2 B m Jm TT 135